
The NoSQL movement
CouchDB as an example

About me

sleepnova - I'm a freelancer

Interests:
emerging technology, digital art
web, embedded system, javascript, programming language

Some of my works:
Chrome 小字典
Android app 呼叫小黃

Text file (good old days)

We are all happy with text files

You already know the API
Use existing text tools
Talk directly to the text editor

Update might needs to shift all data
Need to scan to find the record you want
Just can't scale to handle large datasets!

Adding constraints on records/fields

Fixed field/record length
Sorted
Easy to lookup by id (offset = id * length of record)
Update In-place (each row can be modify independently without
affecting each other)

Data expanded
Search is still painful

Indexing

Index of search term

ex. index of record No.
0, 0
1, 10
2, 20
3, 35
...

Shorter path to the data
Update/delete needs to rebuild indexes. (expensive!)

Keep evolving...

Store typed binary data to reduce data size and IO
Smarter indexing mechanism (B+/-Tree)
Eliminate redundance to save storage

Much like refactoring your code
Toward data normalization

How about data integrity, consistency, rejoin normalized data
and transaction?

There comes the Relational Database

Relational model
SQL standards for query, rejoin...
Data schema

Integrity check...
Transaction control

Isolation level
Atomic operation

Which solves many problems above!

Wall again...

Scalability
Transaction lock (isolation level)
Synchronization latency

Resistance
Model mismatch

Object-Relational mapping (OR mapping, ORM)
Schema migration

If you lock too much, users end up waiting all the time!
Static schema doesn't work well in reality, it evolves over time!

CAP theorem

Consistency
All database clients see the same data, even with
concurrent updates.

Availability
All database clients are able to access some version of
the data.

Partition tolerance
The database can be split over multiple servers.

Pick two.

The NoSQL movement

"Not only SQL" - some said.

So now we have
key-value database
document database
graph / network database

NoSQL is about relaxing constraints to give you more options
for your context. Giving the controls back so you can do
whatever you want with your data with less resistance.

I think it's nothing serious about SQL, we just use this term to
refer to the old decisions.

Introduction CouchDB

If there’s one phrase to describe CouchDB it is relax.

Let me tell you something: Django may be built for the Web, but
CouchDB is built of the Web. I’ve never seen software that so
completely embraces the philosophies behind HTTP. CouchDB
makes Django look old-school in the same way that Django
makes ASP look outdated. - Jacob Kaplan-Moss

RESTful HTTP

You already know the API
Use existing HTTP tools
Talk directly to the browser

A new era again! :)

RESTful HTTP (CRUD)

Create
HTTP PUT /db/mydocid

Read
HTTP GET /db/mydocid

Update
HTTP PUT /db/mydocid

Delete
HTTP DELETE /db/mydocid

Document Oriented (JSON)

{
 "_id": "COSCUP / GNOME.Asia 2010",
 "_rev": "9-0830646cdcea8835eef54e531fd35e19",
 "date": [2010, 8, 15],
 "at": "Academia Sinica, Taipei, Taiwan",
 "url": {
 "zh-tw": "http://coscup.org/2010/zh-tw",
 "en": "http://coscup.org/2010/en"
 }
}

Document Oriented

With _ID(uuid) and _REV(revision)
Real world document behavior

Bills, letters, tax forms...
Natural data behavior

Self contained
Schema-less
Atomic operation at document level
Cache-ability
Eventual Consistency

MapReduce View Definition (Indexed)

How to query without a query language?
Create view with MapReduce functions in Javascript

ex. summing doc.num up
{
 "map":"function(doc){ emit(null, doc.num); }",
 "reduce":"function(key, values){ return sum(values); }"
}

Bring function close to data, bring results close you!

MapReduce

map

reduce

Applications are documents

Design documents
Two tier web application (CouchApp)
Show function

Different presentation for different HTTP content-type
Javascript render function :D

Master-Master Replication

Means for synchronize between CouchDB nodes
Each node working independently offline while become one
when online
Other CouchDB enabled devices

iPhone
Andorid
Browser (Web Storage)

Append only
Once written, never touch the data again (robustness)
No fix-up phase after a crash
Reduce disk seek on write

Change notifications (Comet push)
Fractal scaling (CouchDB Lounge)

Other Stunning Features

I Use Couch DB

A rap by CouchDB team
http://vimeo.com/11852209

http://vimeo.com/11852209

Is NoSQL Really Non-relational?

Q: Does that mean my data are going to be non-
relational? How can I do things without relations!

A: Well, No!

It only means the database does not force you to describe the
relations between your data in a particular way.

In fact, you can have more flexible relations while the database
doesn’t add any constraint to it!

Comparing key-value, document and
graph database
K-v database is a flat key space storage

Allows you to put any possible format in it
Document database = k-v storage+ document aware
operations

validation, show, view...etc
Graph/network database

You can think the keys of k-v db is path/routes to the
data in graph db.
Handles the link/reference and traversing for you.
Different path/routes can lead to the same object.

Database Trends

JSON format, RESTful architecture
Schema-less, lock free, append only
Much more low-level but easier to start with
Avoid single point of failure
Not a perfect system all the time but always tries it’s best effort
to serve you

Thanks!

