

eekboard
a virtual keyboard for GNOME

Daiki Ueno

ueno@unixuser.org

Red Hat, i18n team

COSCUP / GNOME.Asia Summit 2010, Taipei, Taiwan

Virtual keyboards (vkbds)

● Caribou

● matchbox-keyboard

● onBoard

● fvkbd

● GOK

● iok

● Florence

● CellWriter

● xvkbd

● kvkbd

Why everyone writes his own vkbd,
while physical keyboard is

merely a switch array?

Why?

● Geeks are all keyboard maniac☺
● A wide variety of demands on vkbds
● Vkbds work closely with other desktop

technologies, whose functions sometimes
overlap each other

➔ Many design decisions depend on how
vkbds interact with those technologies

Vkbd use cases

● Kiosk
● Tablet PC
● Mobile phone without keyboard
● Typing tutor
● Unicode character input

Vkbd related
desktop technologies

● GNOME Accessibility
● Convert UI events to ones helpful for disabled users

● Input methods
● Convert UI events to (typically multilingual) text

● Keyboard layout configuration
● Convert physical key events to logical symbols,

based on users' preferences
– e.g. using generic US layout keyboard as Dvorak layout

Their functional territories
sometimes conflict.

Vkbd related desktop
technologies: contradictions

● Who activates vkbd?
● GNOME Accessibility - Caribou
● Input methods - ibus-input-pad, scim-panel-vkb-gtk

● How to deliver key events?
● send them as X events
● send translated symbols directly to input methods

● How can a vkbd intercept key events?
● If vkbd should react to physical key events, how to

capture them?

Ideas behind eekboard

● Throw away the idea of creating a
single mighty vkbd that meets all the
requirements
● Instead, start from a GUI library to create keyboard-

like user interfaces

● Decouple the GUI from accessibility,
input methods, and keyboard layout
configuration

eekboard

● libeek
● easy embedded keyboard
● A library to create keyboard like UI
● GUI toolkit agnostic API
● Can read keyboard layout configuration

from various sources
● eekboard

● A sample vkbd implemented with libeek

libeek basic concepts:
element tree

key section keyboard

A keyboard is a tree of elements

GUI toolkit agnostic API

/* Create a GTK+ keyboard. */

keyboard = eek_gtk_keyboard_new ();

/* Create a section in the keyboard. */
section = eek_keyboard_create_section (keyboard);

/* Add a row in the section. */
eek_section_add_row (section, 10, ...);

/* Create keys in the section. */
key1 = eek_section_create_key (section, 0, 0);

/* Obtain actual GTK+ widget. */

widget = eek_gtk_keyboard_get_widget (keyboard);

Supported GUI widgets

● ClutterActor
● GtkDrawingArea

● Code borrowed from libgnomekbd

● GTK+ button

Keyboard layout configuration

/* Create a keyboard layout configuration
 using XKB. */

layout = eek_xkb_layout_new ();
eek_xkb_layout_set_names_full (layout,
 “symbols”, “pc+us+in(ben)”,
 “geometry”, “kinesis”,
 -1);

/* Apply the layout to the keyboard.
 This will populate sections/keys in keyboard. */
eek_keyboard_set_layout (keyboard, layout);

Supported keyboard layout
configuration

● XKB
● Consists of 3 components

– Keycodes – physical key IDs
– Symbols – mapping from keycodes to logical symbols
– Geometry – appearances of keyboard

● libxklavier wrapper makes it easier to customize by
– Model
– Country
– Language

● XML layout files

Put it all together
/* Create a keyboard layout configuration using
 libxklavier. */

layout = eek_xkl_layout_new ();

/* Create a keyboard element implemented
 as ClutterActor. */

keyboard = eek_clutter_keyboard_new ();

/* Apply the layout to the keyboard. */
eek_keyboard_set_layout (keyboard, layout);

/* Convert keyboard into ClutterActor. */
clutter_group_add (CLUTTER_GROUP(stage),

 eek_clutter_keyboard_get_actor
 (EEK_CLUTTER_KEYBOARD(keyboard)));

So how about event handling?

/* Find a key element in the logical keyboard. */
key = eek_keyboard_find_key_by_keycode
 (keyboard, 0x38);
g_signal_connect (key, "pressed", on_a_pressed);

Keyboard realized as ClutterActor

Logical representation of keyboard

 e

vent

How about modifiers?

Each key is assigned a matrix of symbols

#
3

ぁ

あ Not limited to 2x2

/* Assign symbol matrix to a key. */
eek_key_set_keysyms (key, keysyms,
 num_groups, num_levels);
/* Set group/level of the entire keyboard. */
eek_keyboard_set_keysym_index (keyboard, group, level);

Le
ve

l

Group

eekboard: a sample vkbd

● Startup
● “tap” on any editable widget via a11y, or
● invoke the command directly

● Layout can be changed from menu
● Typing monitor

● Trap all key events and act as a typing
monitor

eekboard: demo

Standalone

Popup

Things to come...

● CSS based theme support
● Flick input
● Multi touch
● Rewrite eekboard in Vala

● Currently it is written in C
● libeek Vala binding is already available

Questions or Comments?

“magic mushrooms” on page #2 is © love janine, cc-by-nc 2.0♡
“Cat Fight!” on page #7 is © privatenobby, cc-by-nc-sa 2.0
The rest of the slide materials including “thai typewriter” photo are © Daiki Ueno, cc-by-nc-sa 2.0

http://ueno.github.com/eekboard/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

